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LINEAR PARAMETER VARYING CONTROL FOR ACTUATOR FAILURE 

JONG-YEOB SHIN*, N. EVA WU+, AND CHRISTINE BELCASTRO* 

Abstract. A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT 
vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the 
estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kaiman 
estimator. The inherent conservatism of the LPV design is reduced through the use of a scaling factor on 
the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the 
controlled system with the on-line estimator show that a superior fault-tolerance can be achieved. 

Key words, fault tolerant control system, fault parameter estimation, reconfigurable controller 

Subject classification. Guidance and Control 

1. Introduction. One of control schemes for a nonlinear system is a gain-scheduled linear parameter 
varying control technique [13, 1, 7, 16]. This approach is particularly appealing in that a nonlinear plant is 
treated as a linear parameter varying (LPV) system whose state-space matrices are functions of a schedul- 
ing parameter vector. This allows linear control techniques to be applied to a nonlinear system. Several 
researches on an LPV synthesis methodology allow the design of the global control law for an LPV system 
over a parameter set which is bounded and measurable [13, 1, 7, 16]. An LPV controller synthesis is formu- 
lated into a linear matrix inequality (LMI) optimization problem. There are LPV control synthesis methods 
according to a functional form of an LPV system. The polytopic LPV control synthesis method [2] is used 
for an LPV system which is a polytopic function of a scheduling parameter vector. The affine LPV control 
synthesis method [1] is applied to an affine LPV system, whose LMI constraints are evaluated at only vertex 
points of an LPV system. The grid LPV control synthesis method [7, 16] is for an LPV system which is a 
bounded function of a scheduling parameter vector. In the method, LMI constraints are evaluated at grid 
points over parameter spaces. These methods can be converted to each other by increasing conservatism 
to describe an LPV system. The grid LPV synthesis method has been successfully applied to synthesis 
controllers for the pitch-axis missile autopilots[17, 12], F-14 aircraft lateral-directional axis during powered 
approach[6, 4], turbofan engines [15, 5] and F-16 aircraft [14]. Scheduling parameters of these applications 
are physical parameters such as angle of attack, mach number, velocity, dynamic pressure, etc. Schedul- 
ing parameters in LPV control synthesis are required to be measurable and the variations of scheduling 
parameters should be in a bounded set. 

In this paper, actuator failures are modeled as an LPV system as functions of actuator effectiveness 
parameters [9]. These parameters are estimated as biases using an augmented Kaiman filter. A set of 
covariance-dependent forgetting factors is introduced into the filtering algorithm. As a result, the change in 
the actuator effectiveness is accentuated to help achieve a more accurate estimate more rapidly. The H^ 
bounds on parameter estimation errors are assessed through simulations, which are then used as bounds 
of real parameter uncertainty in the construction of a robust LPV control law. Actuator faults can be 
parameterized as estimated fault effectiveness parameters. Thus, it is possible to formulate a fault tolerance 
control design problem as an LPV control synthesis problem based on estimated faults parameters. 

Fault estimation errors and modeling uncertainties are represented by an uncertainty block in the con- 
struction of a robust LPV control law. The structure of an uncertainty block is not included in an conventional 
LPV control synthesis methodology [7, 16]. A scaling factor on a uncertainty block can reduce conservatism 
of the LPV synthesis [1]. In Ref.[l], it is formulated into a single optimization problem to find a scaling 
factor and a control law to achieve a certain level of performance. The optimization problem is not a convex 
problem, which has unknown positive matrices X and Y related with a control law and a scaling factor S 
related with the uncertainty block structure. The problem is solved by an iteration method of fixing X and 
Y or a scaling factor S. In this paper, the problem is formulated into two LMI optimizations: one is to design 

*ICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23681. This research was supported by the National 
Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the first author was in residence at 
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an LPV controller with given a scaling factor and the other is to determine a scaling factor S with a given 
control law. The problem is solved by an iteration method of fixing a control law instead of fixing variables 
X and Y. This helps to find a scaling factor S for minimizing an induced-^2 norm of the closed-loop system. 

This paper contains the following sections. In Section 2, an LPV synthesis methodology used in this 
paper is summarized. In Section 3, fault parameter estimation methods are presented. In Section 4, an LPV 
controller for an aerospace vehicle is designed by using an LPV synthesis control methodology with a scaling 
factor. In Section 5, the simulation results of the closed-loop system are presented and this paper concludes 
with a brief summary in Section 6. 

2. LPV Synthesis. 

2.1. Problem Statements. In this section, a control synthesis problem is defined, based on an es- 
timated parameter vector p E Hn" such as actuator effectiveness [9]. Actuator effectiveness parameters 
represent actuator failure cases (actuator damage). Suppose actuator effectiveness parameter can be esti- 
mated using the estimation methods presented in Section 3. A system dynamics can be represented by an 
LPV system according to an estimated scheduling parameter vector and estimation error bounds. 

An LPV system can be represented as functions of an estimated scheduling parameter vector p with an 
uncertainty block A which captures parameter estimation errors and unmodeled dynamics. An LPV system 
can be written as: 

X 

eA   
€p 

.y. 

A(p) BA(p) Bp(p) Bu{p)' 
Ce(P) DAA(p) DAp{p) DAu(p) 
Cp(p) DpA(p) Dpp(p) Dpu(p) 
Cv{p) DyA(p) Dyp(p) 0     _ 

x 
dA 

dp 

u 

,dA = AeA, (2.1) 

where x e 1ln*, eA € TlnA, ep E W1'* ,yEllny,dA£ ft"A, dp E Knd?, and u E TZn". All of the state-space 
matrices are of appropriate dimensions. 

An uncertainty block set A is defined as: 

A = {A = diag(61I1,---,6nIn,An+1,--- ,An+m):6ieR,AieRlxl,ä(A)<ß}, 

where ß is normalized to 1 without loss of generality. There exists a scaling factor set S such that 

S = {S:S>0, SA = AS,   5e7enAXnA}. 

The input/output scaling matrices L-1/2 and J1/2 are defined as 

(2.2) 

(2.3) 

L"1/2 = S"1/2      0 
0       /„„_ 

p 1^[nA+ndp)x(nA+ndp)       jl/2 _ s1/2    0 
0 In.. 

g -^(nA+nep)x(nA+n(,p) ^.4) 

where Sll2 E S and S'1/2 E S. 
The induced £2-norm of a parameter dependent stable LPV system is defined as 

IIGI 2<_2 = SUp | 
Vp, de £2, d^O 

e 2 

for zero initial conditions x(0) = 0. 
Suppose there exists an LPV controller K(p) which stabilizes an LPV system P(p). The control synthesis 

problem is: 

min     \\J1/\S)Fl(P(p),K(p))L^2(S)\\2^, 
K(p),  S£S 

(2.5) 

where Fi(P(p),K(p)) means a lower linear fraction transformation (LFT). The optimization problem of 
equation (2.5) is not convex in K(p) and S. The problem is similar to a D-K iteration. In this paper, we 
approach to the problem in a similar manner of solving the D-K iteration problem[3]. 



2.2. Control Synthesis Methodology. In this section, a procedure of solving the problem is pre- 
sented. There is an LPV control synthesis methodology in Ref. [1] with a scaling factor. In Ref. [1], an LMI 
optimization can be formulated with unknown matrices X > 0, Y > 0, and scaling factor matrices J1/2 

and L-1/2. However, an LMI optimization problem in Ref. [1] has an equality constraint. In this paper, to 
avoid an equality constraint, the augmented LPV system with the scaling matrices J1/2 and L-1/2 is used 
to design an LPV controller. 

Suppose a scaling factor S is given. The augmented LPV open-loop system with the scaling matrices 
J1/2 and L-1/2 can be written as: 

X \A(p)     Bl{p)     B2{p)] X r A{p) B1(p)L-1/2 B*{p)    1 X 

e = dip)   D11(p)   D12(p) d = J1/2Ci(p) J1/2jDu(p)L-l/2 Jll2Dl2{p) d 

y. [C2{p)   D21(p)        0    J u I CM) An(p)£-1/2 0 u 
(2.6) 

where e = [e£ ej]r and d = [dj dj]r. With assumption that D12{p) and D2i(p) are full column and 
row rank for all p, respectively, an LPV control synthesis methodology in Ref. [16, 7] can be used in this 
paper. For the sake of completeness, a brief summary of the LPV control synthesis methodology in Ref. [16] 
is presented in this section. 

Using Q-R decompositions[7] of matrices Di2(p) and D2i(p), the augmented LPV system is rewritten 

X 

ei   
e2 

v. 

A(p)      BniP)      Bu{p)     B2(pj 
Cn(p)    £1111 (p)    Din2(p)       0 
Cu(p)     01121 (p)      DU22(p)        In 

cm 0 0 

(2.7) 

where dx e Tln^, d2 € Tln^, ex € TZn^, and e2 £ Tln^. Matrices Dim, Dm2, Dim, Dim, C11, C12 are 
of appropriate dimensions. 

There exists an LPV controller K(p) which leads to the induced-£2 norm of the closed-loop system being 
less than constant 7. The LPV controller K(p) can be constructed from the solution matrices, X(p) £ Hnxn 

and Y(p) G Hnxn which are calculated by solving the following LMI optimization. 

mm    7, 
X(p),Y(p) 

(2.8) 

subject to 

■x(p)ÄT(p) + Ä(p)x(p) + YZiiSam) -B2{P)BUP)  x{p)(%M 
Cn(p)X(p) -inei        7 
TlBT{p) -r-'Dlnip) 

7-
1
S(P) ■ 

-lD,n.{p) <0, (2.9) 

Ä(p)Y(p) + Y(p)ÄT(p) + ET=i(2.i§:) ~ C?(p)C2U>)    Y(p)Bn(p)     TlCT{p) " 
~ " l-'Dli.iiP) BUP)Y{P) 
y-'cip) 

1nil 

7_1Dn.i(p) *ne 

<o, (2.10) 

X(p)    i-i In 

l~lIn       Y(p) >0, (2.11) 

where 

X(p)>0,  Y(p)>0, 

Ä(p) = A(p) - B2(p)C12(p),  B(p) = B1(p) - B2(p)Du2.(p), 

Ä(p) = A(p) - Bl2(p)C2(p),  C(p) = dip) - Dn.2ip)C2iP). 

(2.12) 

(2.13) 



The definitions of matrices Dn2., £>n.i, Dm. and Dn.2 are taken from Ref. [16]. Also, the realization of 
an LPV controller from the solution matrices X and Y are taken from Ref. [16]. 

The benefit of the LPV synthesis methodology is that there is no limitation of an affine functional form 
of LPV system state-space matrices. Since the LMI constraints in equations (2.9)-(2.10) are evaluated at 
grid points over all scheduling parameter spaces, an LPV system should be just a function of a scheduling 
parameter. In this paper, we consider actuators are failed one at a time. In the failure case, the system 
variations due to actuator failures can not be represented by an affine function of an actuator failure pa- 
rameter vector. The disadvantage of the LPV control synthesis methodology is that robust stability over all 
parameter spaces is not guaranteed unless choosing appropriate number of grid points. 

Suppose there exists an designed LPV controller K(p) which stabilizes the augmented LPV system. The 
closed-loop LPV system with a given controller is written as: 

eA 

■    Acl(p) BUl{p)S-1'* B2cl(p) 
S^Clcl(p)   S^DllcA{p)S-1'2   S^D21Jp) 

.   C2cl{p) D2lcl{p)S~^ D22cl(p)   . 
d,A = AeA, (2.14) 

T]T where xci = [x     x\\ 
Applying the Kaiman-Yakubovich-Popov (KYP) Lemma [9], the LMI optimization is formulated to find 

a scaling factor S. There exists an scaling factor S e S which leads to the induced-£2 norm of the closed-loop 
system being less than 7«. The scaling factor S can be determined solving the following LMI optimization. 

mm    7S p>o,ses 
(2.15) 

where 

M11 

* 

PB,,+-,71Cl,D2 nct -t-7, *<-2c,^2ie, + CTclSDucl    PB2cl + 77 CiclD22c, + C(clSDi2c: 

j-1D^ctD21cl+D'[lclSDne,-S 
* l-^T>l2clD22d +Dl2c,SD12cl -I 

<0 (2.16) 

Mn = ATP + PA + P + 7s"1C2
T

c,C*2e, + CltSClcl. 

In the LMI constraint, * denotes a symmetric component. 
The iteration procedure to solve the problem in equation (2.5) is follows: 

1. Design an LPV controller K(p) for a system from the LMI optimization in equation (2.8) with fixed 
S. At the first iteration, S is assumed as I. 

2. Solve the LMI optimization problem in equation (2.15) over P(p) and S based on the closed-loop 
system with the designed LPV controller K{p). 

3. Generate an augmented LPV system with the scaling factor S 

Gi+i(p) = 
S1'2   0' 

0      I 
GAP) 

g-l/2 

0 
(2.17) 

where Gi{p) is an LPV model at the ith iteration. 
4. Iterate over step 1 to 3 until convergence or terminate iteration based on satisfaction with a designed 

LPV controller. 
The iteration method can not guarantee finding global solutions of K and S since the problem in 

equation (2.5) is not convex in K and S. Also, there is no guarantee of convergence in the iteration process. 
In the LPV synthesis methodology, the matrix P(p) is related with the solution matrices X and Y of 
equations (2.9)-(2.10). When a designed controller is fixed to calculate the scaling factor 5, the matrix 
P(p) can be calculated from the solution matrices X and Y and fixed in the LMI optimization [16]. In this 
paper, the matrix P(p) is also set as an unknown matrix in the LMI optimization in equation (2.15) to relax 
the constraints of fixing the LPV controller K(p). Thus, there are two LMI optimizations in the iteration 
process. 



3. Parameter Estimation. This section briefly describes the formulation of a real parameter estima- 
tion problem, which, when specialized to the actuator effectiveness estimation, transforms a fault (loss of 
actuator effectiveness) tolerant control problem to a robust LPV control problem. The development of this 
section follows that in Ref. [9]. 

The estimator is based on a linear discrete design model of the form: 

xk+1=Ad
kxk+[bdjl   •••  O*""] 

+Bd
kuk + w% 

= Ad
kxk+Efak + Bduk+wx

k, 

7*+i =lk+wl, 

yk = Ckxk+vk> 

-k    J 

(3.1) 

(3-2) 

(3.3) 

(3.4) 

where xk € Rn*, 7* £ Rn", uk e Rn" and yk S Rny are the state, bias, input, and output variables, 
respectively. The discrete model can be obtained from a continuous model via, for example, the Euler's 
rule with a sampling period Ts, which preserves the functional dependence of the "B" matrix on 7. The 
bias vector 7 with component -1 < 7! < 0 relates to a actuator failure parameter. It is obvious that 
E( = Bfx diag{ul, ■ ■ ■ ,uk"}. w%, w\ and vk denote the white noise sequences of uncorrelated Gaussian 
random vectors with zero means and covariance matrices Qk, Qk and Rk, respectively. 

The minimum variance solution is obtained by a direct application of the two-stage Kaiman filter al- 
gorithm of Keller and Darouach[8], with constant coefficient matrices in Ref. [8] replaced by time-varying 
matrices. The filter is decoupled into four sets of equations. They given as follows. 
—Optimal bias estimator 

7*+l|* = 7*|*> 
pf 
^k+l\k 

7*+i|*+i 

nk+l 

pi 
*JH-l|k+l 

7*|*)> 

Pk\k + Qk' 

■ 7*+i|* + Kk+i(rk+i - Hk+1\k 

■ P7       HT   , 

(#*+l|*-P*+l|fc-H*+l!* + Sk+l)~  ' 

: {I ~ Kk+lHk+l\k)Pk+i\k- 

—Bias-free state estimator 

**+i|* = A%xk\k + Bkuk + W*7*|* - Vk+i\k%\k, 
>x 
k+l\k 

T 

Pf.ii* = At%(Ai)T + QI+ W.P^Wl 
-V*+i|*Pj.+1|j.Vj.+1|A., 

%k+i\k+i = z*+i|* + Kk+l(yk+i - Ck+1xk+1\k 

Kk+1 ~ Pk+l\k(Ck+l)   {C*+i-p*+i|*(C*+i) 

+Rk+i}-\ 

■P*+i|*+i = (I - Kk+iCk+i)Pk+i\k, 

where the filter residual and its covariance are given as 

?k+i = Vk+i - C*+i^*+i|*> 

Sk+i - C*+i-P*+i|*(C*+i)   +-R*+i- 



—Coupling equations 

Wk = Ad
kVm + Et 

vk+i\k = wkp%k{PZ+Mk)-\ 

Hk+i\k = Ck+1Vk+i\k, 

Vk+l\k+l - Vk+l\k ~ &k+lHk+l\k- 

—And finally the compensated state and error covariance estimates 

%k+l\k+l   = ^*+l|ft+l  + V«!+l|fcH-l7*+l|fc+l! 

Pk+l\k+l - ^ft+ll*+l + VM-llAH-l^M-llM-l^+llfc+l- 

A further measure is taken to modify the above filtering algorithm so that the estimates become more 
responsive to abrupt changes in the control effectiveness factors. 

A well known technique for estimating time-varying parameters is the use of forgetting factors. The 
basic idea is to enable a recursive algorithm to discount the past information so that the filter is more apt to 
recognize the changes in the system. Since the time update of the bias estimate governed by %+i\k = %\k is 
the dominant opposing force to acknowledge the abrupt changes in the biases, forgetting factors introduced 
into the time propagation equation Pk+l,k - PZk + Ql of the bias covariance is likely to function most 
effectively. 

Assume that covariance PZk adequately describes the bias estimation error along both temporal and 
spacial directions under the normal system operation condition. Then this covariance provides a basis for 
the selection of forgetting factors. The bias estimates should be prevented from being impetuous, as well 
as from being indifferent to the changes shown in the measurements. A technique suggested in Ref. [11] 
amounts to select forgetting factors that would force the adjusted covariance in Pk+1ik = Pk\k + QJ to s*ay 
within some prescribed bounds 

ffmin-f < Pk+l\k ^ ^maxi", (3-5) 

where <xmin and crmax are positive constants with 0 < amin < <Tmax < co, and / is the identity matrix. Let 
the dyadic expansion of PZk be given by 

^* = X>ii*4(4)T, (3-6) 

where a\,k,..., a^k are the eigenvalues of PZk with a\\k > ... > a%?k, and e\,...,e£* are the corresponding 
eigenvectors with ||e^|| = ... = ||e£"|| = 1. Equation (3.6) can then be expressed as 

Pk
1
+Mk=f:^i4(ei)T + Ql        0<A|<1. 

i=l      k 

Following the argument in Ref. [11], the forgetting factor Xk can be chosen as a decreasing function of 
the amount of information received in the direction ek. Since eigenvalue ak,k of PZk is a measure of the 
uncertainty in the direction of e\, a choice of forgetting factor Ajj. based on the above constraints can be 

\   oi|fc [amin + "-"„""""ail»,]        ,      Oil» < «max- 

The estimation algorithm discussed in this section will be seen to have been applied successfully to a HiMAT 
vehicle. 

4. Example. In this section, the iteration process described in Section 2.2 is applied to control a 
HiMAT vehicle for actuator failure cases. Recall it is assumed that actuators are failed one at a time. Thus, 
the control reconfigurability of the HiMAT vehicle never goes to zero [10]. The system variations due to 
actuator failures can be modeled as an LPV system, a function of an estimated scheduling parameter. 



^^^: 

4.1. Linear Parameter Varying Model of HiMAT. The model of the HiMAT vehicle taken from 
the //-synthesis Toolbox [3] has two inputs: elevons Se and canards 6C; two outputs: angle of attack a in 
radians and pitch angle 9 in radians; and four states: velocity V in ft/sec, angle of attack, pitch rate q in 
rad/sec, and pitch angle. The open-loop model is 

(4.1) 

where 

-0.0226 -36.6 -18.9 
0 -1.9 0.98 

0.012 -11.7 -2.63 
0 0 1 

X 

y. 

A 
C 

B 
D 

■ 

X 

u 
6 

'  u=[ö 
e 

5 

32.1] 0          0 1 
0 
0 ,B 

-0.414     0 
-77.8    22.4 ,c = 0   10   0 

0   0   0   1 
0 0 0 

,£> = 02 x2- (4.2) 

A failure parameter vector r = [n r2]
T is determined by the two actuator effectiveness parameters n 

and r2 of elevon and canard actuators, respectively. Assume that the failure parameters linearly enter in the 
model. The state-space model of the HiMAT vehicle is written as 

x = Ax + B(r)u,    y = Cx, 

where A and C are constant matrices and B(T) = [b\T\ b2T->\. The vectors 61 and &2 are the columns of 
B. The actuator failure parameters can be estimated using the estimation method described in Section 3. 
However, there is estimation error 6T - [STl 6T2]

T. The actuator failure parameter vector r is written as 

T = T + 6T, 

where r is an estimated value. The estimation error bound is assumed as \f8^5T < 0.05 for each actuator 
failure case. The matrix B(T) is rewritten as: 

B(T) 
fi + 0.05(5i 0 

0 f2+ 0.05<52 

(4.3) 

where the real uncertainty parameters <5i and 82 vary from -1 to 1, respectively. 
The LPV model of HiMAT is 

x = Ax + B 
h   0 
0    f2 

u + B 
0.05      0 

0      0.05 
w, (4.4) 

z — u,   y = Cx, (4.5) 

= A.Z.   A = 
<$i    0 
0      02 

(4.6) 

The LPV model in equation (4.4) is a linear function of a parameter vector r. However, the parameter 
vector T can not be chosen as a scheduling parameter since we consider that the actuators are failed one at 
a time. Thus, T\ and r2 can not be zero simultaneously. To describe the failure cases, a synthetic scheduling 
parameter p is introduced as 0 < p < 2. 

0<p< 1 
p=\ 

Kp<2 

0 < fi < 1,       f2 = 1 
n = 1, T2 = 1 
n = 1,     0 < f2 < 1 

(4.7) 

Note that the LPV model of the HiMAT vehicle is not an affine function of a scheduling parameter p. 
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FIG. 4.1. Interconnection structure for the model matching problem. 

4.2. LPV Controller Design. The control objective is to track a pitch angle command at actuator 
failure cases. A designed LPV controller should robustly stabilize the HiMAT vehicle over the failure param- 
eter variations. The controller synthesis problem is formulated as a model matching problem in Figure 4.1. 

The ideal response model Ti of pitch angle is taken from the example in the /i-synthesis Toolbox [3]. 
The performance weighting function Wp and unmodeled dynamics W„ are also taken from the example in 
the /^-synthesis Toolbox [3]. The sensor noise is modeled as white noise with 0.6° amplitude for angle of 
attack and pitch angle measurements. The weighting functions in Figure 4.1 are 

Ti 

Wp 

Wn 

Wno 

~ s/0.8 + 1' 
s/50 + l_ 

s/0.05+1' 
_no    s/5 + 1     T 
-u-%/iooo + r2x2' 
= 0.01/2x2. 

The control synthesis problem of the HiMAT vehicle is formulated to minimize the induced-£2 norm of the 
augmented LPV system with the weighting functions. 

To solve the control synthesis LMI optimization problem in equation (2.8), basis functions for X(p) and 
Y(p) are required since X and Y are assumed as functions of p. 

X{p) = YJh(p)Xu Xie-ll»™,  Y(P) = 5>(P)*J. Yjenn (4.8) 

where basis functions fi(p) and gj(p) are given before solving the LMI optimization in equation (2.8) over 
Xi and Yj. There is no analytic method to choose optimal basis functions for X and Y in general. The 
functions /;(p) and gj{p) are related with sensitivity of unknown matrices Xi and Yi, respectively. In this 
paper, the basis function set is defined as {1, l/p,p} for X and Y to help the LMI optimization for total 
failure cases (fx = 0, f2 = 0). Note that it is not necessary to define that gj(p) is equal to /»(p). Since X and 
Y are functions of p, the parameter rate bound is required to solve the LMI optimization in equation (2.8). 
Recall that the scheduling parameter is an actuator failure parameter. Thus, for example, the scheduling 
parameter can suddenly vary from 1 (no failure case) to 2 (total canard failure case). In this paper, the 
parameter rate bound is assumed as \p\ < 100 to capture sudden variations of the scheduling parameter. 

To make the LMI optimization computationally tractable, the LMI constraints are evaluated at the 
following grid points: 

p S {plO.01, 0.1, 0.2, 1.9, 2}. 



TABLE 4.1 
7 values in the LMI optimization in equation (2.1 

Iteration      7 
1 1.23 
2 0.71 
3 0.60 
4 0.54 
5 0.85 

diag([l,l,l,l]) 
diag([0.497, 0.168, 1.186, 1.277]) 
diag([1.404, 1.289, 1.801, 1.453]) 
diag([1.580, 2.193, 2.100, 1.187]) 
diag([2.007, 1.430, 2.506, 1.849]) 

Also, the same grid points are used to solve the LMI optimization in equation (2.15). To solve the LMI 
optimization in equation (2.15), the basis function set for P is required. Since the matrix P is related with 
X and Y, the basis function set for P is chosen as {1,1/p, p}. 

In this paper, the scaling factor S is assumed as constant over all scheduling parameter variations. The 7 
values and the scaling factor S for each iteration are written in Table 4.2. The scaling factor S is associated 
with the uncertainty block A which is 

A = diagQßi, S2, Seu, Scan\). 

Recall that the real uncertainty parameters <5i and S2 are associated with elevon and canard actuator failure 
parameters, respectively. The multiplicative uncertainty parameters <5e;e and Scan are also associated with 
elevon and canard control channels in Figure 4.1. 

The iteration process is stopped at the 5th iteration since the 7 value at the iteration is greater than 
the previous iteration. Recall that the iteration process is not guaranteed to be converged. However, the 
performance index 7 in the LMI optimization of equation (2.8) is significantly reduced from 1.23 to 0.54 by 
using the scaling factor S. In the remainder of this paper, the LPV controller for the HiMAT vehicle denotes 
the designed LPV controller at the 4th iteration. 
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FIG. 5.1. The LPV controller simulations with and without actuator failures. 
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5. Simulations. In this section, the designed LPV controller is applied to control the HiMAT vehicle 
for pre-defined failure scenarios. One of the failure scenarios is that a total canard failure occurs 1 and 10 
seconds and a total elevon failure occurs between 20 and 40 seconds. The scheduling parameter corresponding 
to the failure scenario is: 

1 < t < 10 sec, 
0 < t < 1 sec, 
20 < t < 40 sec. 

10 < t < 20 sec (5.1) 

For the purpose of comparison, the LPV controller for the HiMAT vehicle is simulated both with and without 
actuator failures. The simulation results are shown in Figure 5.1. The pitch angle commands are given as 
10° at 1 sec, 0° at 10 sec, and 10° at 20 sec, sequentially. 

In this simulation, the scheduling parameter corresponding to the true failure parameters, as shown in 
the bottom of Figure 5.1 is fed into the LPV controller. It is observed that the LPV controller achieves the 
desired goal of tracking pitch commands in the presence of actuator failures. It can be seen from the second 
and the third plots in Figure 5.1 that the LPV controller always relies on the healthy actuator to track the 
pitch commands abandons the failed actuator. For example, the LPV controller keeps the elevon actuator 
signals close to zero at the elevon actuator failure case. 

The LPV controller is also simulated for the same faulty system as described in equation (5.1) but with 
bounded real parameter perturbations: Ap = diag([6i,S2]), ||AP|| < 1. Two examples of simulations with 
perturbations are shown in Figure 5.2. "pertl" and "pert2" in Figure 5.2 denote the cases [6i 62] — [1 1] and 
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FIG. 5.2. Time responses of pitch angle with LPV and Hoo controllers. 

[<$i $2] = [-1   - 1], respectively. The simulation results show that the LPV controller can robustly stabilize 
the perturbed system and achieve the desired performance level of tracking the pitch angle commands. 

For the purpose of comparison, a fixed Hco controller is designed at p = 1 (without failures) using 
^-synthesis Toolbox [3] with the same weighting functions described in Section 4. The closed-loop response 
with this Hoc controller is also simulated for the actuator failure scenario of equation (5.1), and shown in the 

10 



bottom plots of Figure 5.2. It can be seen that the H^ controller can achieve the desired performance level 
when canard fails(l < t < 10 sec). The Hoa controller cannot, however, achieve the desired performance level 
at the elevon failure. This is consistent with the finding through reconfigurability calculation [10] that the 
canards are less effective in controlling the pitch movement than elevons, and that loss of eleovn effectiveness 
can significantly affect tracking the pitch commands. 

The control signals of the LPV and H^ controllers are plotted in Figure 5.3 for the same failure scenario. 
Since the control signals of the LPV controller are the same with or without perturbations, only simulation 
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FIG. 5.3. Control signals for each actuator with the LPV and Hoc, controllers. 

results with "pertl" and "pert2" are plotted in Figure 5.3. It can be observed from Figure 5.3 that the 
elevon signals of the H^ controller are significant despite the failure of the elevons, while the elevon signals 
from the LPV controller are insignificant and the canard signals are to compensate the elevon failure in 
Figure 5.3. 

Now, the fault parameters are estimated with an on-line estimator that is integrated into the LPV 
controller as shown in Figure 5.4. The on-line estimator in Figure 5.4 has two parts: one is a two-stage 
discrete Kaiman filter and the other carries out a simple logic of equation (4.7) that converts the bias 
estimates to the corresponding scheduling parameter estimate. The following set of parameter values are 
used in the the two-stage Kaiman filter. Sampling time is set at 0.01 sec to capture the response details of 
the open-loop dynamics of the vehicle. The covariance matrices Q%, Q\ and R\ described in Section 3 are 
set as constant matrices with values: 

Ql    =3diag([l,  0.012,   0.012,   0.012]), 
Ql    = 3diag{[0M2,  0.052]), 
Rl   =Zdiag([0M2,  0.012]). 

The covariance matrices affect the convergence of the estimator and the noise level considered in the control 
synthesis in Section 4. The initial values of estimated state x0|o and biases 70|0 are set as [0 0 0 0]T and 
[0 0]T. The initial covariance matrices PZ0 and PZ0 are set at 1072 and 10 J4- It is found that the estimates 
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FIG. 5.4. Simulation block diagram of a closed-loop system with an on-line estimator. 

TABLE 5.1 
Different sets of the varying forgetting factors 

Case     AQ     a rmn      ^max 
1 0.90 10 100 
2 0.95 10 100 
3 1.00 10 100 
4 1.00 106 107 

are sensitive to the selection to its initial values, but insensitive to the selection of its initial error covariances. 
The most delicate part of the bias estimation lies with the selection of values for Ao, amjn and amax in 

equation (3.7). This is done by experiments and with little theoretical guidance. Different sets of values in 
Table 5 have been attempted. The fault parameter on-line estimate results are shown in Figure 5.5. It is 
obvious that bias estimation results vary in different cases studied. From the top plots of Figure 5.5, it is 
noticed that the value of A0 affect on convergence rate of estimation. When A0 is set as 1 at Case 3, the 
bias estimate is not convergent at canard failure situation. For this case, the two fault parameter estimates 
are strongly coupled that can cause false identification of faults. In Cases 1, 2 and 4, initial transients in 
estimates are visible, since the canards are less effective in controlling pitch angle. It is unknown how the 
control surface effectiveness is directly related with the transient behavior of the parameter estimator of the 
two-stage Kaiman filter. For Case 4, the covariance matrix P7 is immediately high value after one step 
integration since am;n is defined as 106. It is founded from the results of Case 4 that the high value of the 
covariance matrix P^ leads to good estimate of the scheduling parameter. 

Simulation results at Case 1 are shown in Figure 5.6. "TV" and "VFF' in Figure 5.6 denote that the 
LPV controller is evaluated at the true values (TV) of the failure parameters and at the estimated failure 
parameters with a variable forgetting factor (VFF), respectively. It is important to note that the LPV 
controller evaluated at the estimated parameter can achieve the desired performance of tracking the pitch 
commands. The difference in tracking performance between using the estimated parameter and the true 
parameter is very small at the steady state. The time delay and transient in the estimate has not formalized 
in the LPV control synthesis process. We currently rely on the robustness of the LPV controller. 

The delay, though undesirable, is helpful in satisfying the rate bounds on the scheduling parameter, 
which is one of the assumptions of the LPV control synthesis methodology. Large delays in fault parameter 
estimates can be detrimental to the stability of a closed-loop system. This is a subject of future study. 
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FIG. 5.5. Scheduling parameter estimates for the cases in Table 5. 

6. Conclusion. In this paper, the LPV controller is designed based on the estimated scheduling param- 
eter. The system variations due to actuator failures are modeled as functions of estimated parameters and 
bounded parameter estimation errors. An LPV controller synthesis problem with bounded parameter errors 
is formulated into two LMI optimizations: one is an LPV control synthesis problem with fixing a scaling 
factor on a uncertainty block and the other is to find a scaling factor given a control law. The optimization 
problem is solved by an iteration method. The performance level of the closed-loop system with the designed 
LPV controller is reduced by the iteration method. 

The iteration approach of the LPV synthesis methodology is applied to control of the vehicle at actuator 
failure cases. It is assumed that the actuators are failed one at a time. Actuator failure parameters of 
the vehicle are estimated as biases using an augmented Kaiman filter. The LPV controller evaluated at 
the estimated failure parameter is simulated with the plant model which varies as true values of the failure 
parameter. The simulation results show that the LPV controller achieves the desired performance level of 
tracking pitch angle commands for actuator failure cases and robustly stabilizes the vehicle. 
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